Metallic carbon nanotubes show great promise for applications from microelectronics to power lines because of their ballistic transmission of electrons. But who knew magnets could stop those electrons in their tracks?
Rice physicist Junichiro Kono and his team have been studying the Aharonov-Bohm effect — the interaction between electrically charged particles and magnetic fields — and how it relates to carbon nanotubes. While doing so, they came to the unexpected conclusion that magnetic fields can turn highly conductive nanotubes into semiconductors.
Their findings are published online this month in Physical Review Letters.
“When you apply a magnetic field, a band gap opens up and it becomes an insulator,” said Kono, a Rice professor in electrical and computer engineering …